Рейтинг:   / 2
ПлохоОтлично 

Справовочник автоэлектрикаВ бесконтактных СЗ контакты прерывателя заменены бесконтактным датчиком, который вырабатывает электрические импульсы в строго заданные моменты времени. Эти импульсы поступают в схему управления током (импульсный усилитель) первичной обмотки катушки зажигания. Бесконтактные датчики не имеют механического контакта и поэтому практически не подвержены износу.

Справочник автоэлектрика

Рисунок - Блок схема бесконтактной системы зажигания:
1 - бесконтактный датчик углового положения KB двигателя; 2 - формирующий каскад; 3 выходной каскад; 4 - коммутатор; 5 - катушка зажигания; 6 - распределитель.

В наиболее простых бесконтактных системах зажигания (рис. 1) устройство управления 4 преобразует сигналы с датчика 1, осуществляя усиление его мощности, и производит коммутацию выходного каскала, нагрузкой которого служит катушка зажигания 5, т. е. реализуются
характеристики, присущие ранее рассмотренным системам зажигания. При этом используются те же механические автоматы опережения зажигания, что и в классической, и. контактно-транзисторной системах.

Электронное устройство 4, функционально и конструктивно объединяющее формирователь 2 и выходной каскад 3, в отечественной литературе принято называть коммутатором.

По аналогии с углом замкнутого состояния контактов в классических и контактно-транзисторных системах зажигания угол включенного состояния выходного транзистора Aвкл, в этих БСЗ постоянный и не зависит от частоты вращения вала двигателя и напряжения батареи. Следовательно, время накопления tn. энергии в зависимости от частоты вращения коленчатого вала изменяется по жесткому закону: tn = Aвкл/6n, т. е. время накопления энергии увеличивается с уменьшением частоты вращения п В такой системе увеличение тока разрыва неизбежно приводит к увеличению мощности, рассеиваемой катушкой зажигания, добавочным сопротивлением и транзисторным коммутатором в диапазоне малых и средних частот вращения вала двигателя.

Отмеченный недостаток не позволяет в рамках БСЗ с постоянным углом включенного состояния выходного транзистора вести дальнейшую интенсификацию выходных характеристик. Поэтому дальнейшим этапом в развитии БСЗ явилось создание систем зажигания с нормируемым временем накопления энергии. В таких системах во всем диапазоне частот вращения вала двигателя и значений питающего напряжения определяется минимальное время, за которое ток разрыва Iр достигает величины, необходимой для индуцирования требуемого значения вторичного напряжения.

Нормирование времени накопления энергии позволяет снизить мощность потерь в катушке и коммутаторе при низких и средних частотах вращения вала двигателя при одновременном увеличении тока разрыва и соответственно энергии искрового разряда, обеспечить оптимальный закон изменения вторичного напряжения и энергии искры в зависимости от частоты вращения вала двигателя; стабилизировать выходное напряжение системы при колебаниях напряжения питания.

БСЗ с нормированием времени накопления энергии реализуются путем введения в коммутатор специального электронного регулятора времени накопления.

Основными недостатками бесконтактных систем зажигания являются механический способ распределения энергии по цилиндрам двигателя, несовершенство механических автоматов угла опережения зажигания, погрешности момента искрообразования из-за механической передачи от коленчатого вала двигателя к распределителю.

Наиболее полно отвечают всем требованиям, предъявляемым к современным системам зажигания, системы с электронным регулированием угла опережения зажигания. Среди способов реализации этих систем можно выделить два основных: аналоговый и цифровой. Аналоговый способ относится к электронным системам зажигания более раннего поколения, когда элементная база, используемая для их построения, имела малую степень интеграции (системы зажигания II поколения). Цифровые системы зажигания (системы зажигания III поколения) являются более совершенными. В основу их работы положены принципы, широко применяемые в вычислительной технике. Цифровые регуляторы представляют собой небольшие, различные по сложности вычислители, порядок работы которых задается специальным алгоритмом. Блок-схема цифровой системы зажигания представлена на рис. 2.

Справочник автоэлектрика

 Рис.2. Блок-схема цифровой СЗ со статическим распределением энергии по цилиндрам:
1 - датчик положения коленчатого вала двигателя; 2 - датчик частоты вращения коленчатого вала двигателя; 3 - датчик нагрузки; 4 - датчик температуры; 5 - интерфейс; 6 - вычислитель; 7 - двухканальный коммутатор; 8, 9 - двухискровые (с двумя высоковольтными выводами) КЗ.

Во время работы двигателя датчики 1 + 4 передают информацию о частоте вращения и нагрузке двигателя, о положении коленчатого вала, о температуре двигателя и температуре окружающей среды. На основании .этой информации, обработанной в интерфейсе 5, вычислительное устройство 6 определяет оптимальный для данного режима угол опережения зажигания. В рамках цифровой системы зажигания возможно применение как традиционного механического распределителя, в функции которого остается лишь высоковольтное распределение энергии по цилиндрам двигателя, так и метода статического распределения энергии. В этом случае для четырехцилиндрового двигателя, например, применяется двухканальный коммутатор 7, два выходных транзистора которого попеременно коммутируют ток в первичных обмотках двухвыводных или одной четырехвыводной катушке зажигания. При этом блок управления формирует два сигнала, управляющих работой коммутатора.

И все же цифровые системы зажигания явились переходным этапом. Последним достижением в этой области стали микропроцессорные системы (системы IV поколения). Они практически не отличаются от управляющих ЭВМ, широко применяемых в настоящее время во многих
областях науки и техники. Микропроцессорные системы управления автомобильным двигателем лишь чисто условно можно отнести к системам зажигания, так как функция непосредственного зажигания является в них частью решения вопроса об оптимизации характеристик двигателя, однако именно в комплексных системах управления двигателем и заключен прогресс системы зажигания.